통계 > 요약 > 상관 검정...
Statistics > Summaries > Correlation test...
상관 검정은 두 변수를 구성하는 사례값들 사이에 어떤 방향의 관계성이 있는지를 통계학적으로 확인하고자 할 때 사용한다. 아래는Prestige 데이터셋에서 교육수준과 수입(연봉) 사이에 어떤 관계성이 있는지를 확인하고자 한다. education과 income 변수를 선택하고, 예(OK) 버튼을 누른다.
상관의 유형 중에서 Pearson product-moment (피어슨 적률상관), 대립 가설에는 양측이 기본으로 설정되어 있다. 이 설정을 바탕으로 상관 검증의 결과를 출력하면 아래와 같다:
cor.test() 함수를 활용한다.
?cor.test # stats 패키지의 cor.test 도움말 보기
## Hollander & Wolfe (1973), p. 187f.
## Assessment of tuna quality. We compare the Hunter L measure of
## lightness to the averages of consumer panel scores (recoded as
## integer values from 1 to 6 and averaged over 80 such values) in
## 9 lots of canned tuna.
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y <- c( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
## The alternative hypothesis of interest is that the
## Hunter L value is positively associated with the panel score.
cor.test(x, y, method = "kendall", alternative = "greater")
## => p=0.05972
cor.test(x, y, method = "kendall", alternative = "greater",
exact = FALSE) # using large sample approximation
## => p=0.04765
## Compare this to
cor.test(x, y, method = "spearm", alternative = "g")
cor.test(x, y, alternative = "g")
## Formula interface.
require(graphics)
pairs(USJudgeRatings)
cor.test(~ CONT + INTG, data = USJudgeRatings)
'Statistics > Summaries' 카테고리의 다른 글
9. Transform toward normality... (0) | 2022.06.19 |
---|---|
8. Test of normality... (0) | 2022.02.13 |
6. Correlation matrix... (0) | 2022.02.13 |
5. Table of Statistics... (0) | 2022.02.13 |
4. Count missing observations (0) | 2022.02.13 |