통계 > 차원 분석 > 주-성분 분석...

Statistics > Dimensional analysis > Principal-components analysis...

Linux 사례 (MX 21)

<주성분 분석> 메뉴 창에서 <변수 (두개 이상 선택)> 에서 4개의 변수를 모두 선택해보자.

Linux 사례 (MX 21)

<선택기능> 창에서 기본 설정되어 있는 기능을 기억하자.

Linux 사례 (MX 21)

local({
  .PC <- princomp(~Assault+Murder+Rape+UrbanPop, cor=TRUE, data=USArrests)
  cat("\nComponent loadings:\n")
  print(unclass(loadings(.PC)))
  cat("\nComponent variances:\n")
  print(.PC$sd^2)
  cat("\n")
  print(summary(.PC))
})

 

Linux 사례 (MX 21)


.PC <- princomp(~Assault+Murder+Rape+UrbanPop, cor=TRUE, data=USArrests)
plot(.PC)

Linux 사례 (MX 21)

biplot(.PC)

Linux 사례(MX 21)

'Statistics > Dimensional analysis' 카테고리의 다른 글

5.3. Summarize hierarchical clustering...  (0) 2022.03.20
5.2. Hierarchical cluster analysis...  (0) 2022.03.20
5.1. k-means cluster analysis...  (0) 2022.03.18
3. factor analysis...  (0) 2022.03.08
1. Scale reliability...  (0) 2022.03.08

+ Recent posts