도움말 > 활성 데이터셋에 대한 도움말 (만약 이용가능하다면)

Help > Help on active data set (if available)

Linux 사례 (MX 21)

R에는 많은 패키지가 있으며, 그 패키지에는 많은 경우 데이터셋을 포함하고 있다. 그 데이터셋에 대한 도움말을 볼 수 있는 기능이다. 생각해보라. 예제 데이터셋을 통하여 함수를 연습하는데, 데이터셋의 특성을 알지 못한다면 분석과 시각화에 필요한 통찰력을 얻을 수 있겠는가.

 

위의 화면은 MASS 패키지가 적재되었고, 또 그 안에 포함된 housing 이라는 데이터셋이 활성화된 상태에서 '도움말 > 활성 데이터셋에 관한 도움말 (만약 이용가능하다면)' 메뉴 기능을 이용할 수 있다는 것이다. 해당 메뉴를 선택하면, 새로운 웹 브라우저 창이 등장하면서, 활성 데이터셋의 도움말이 제공될 것이다.

Linux 사례 (MX 21)


help("housing")  # housing 데이터셋 도움말 보기
?housing         # housing 데이터셋 도움말 보기 (? 활용)

MASS::housing()

library(MASS, pos=16)
data(housing, package="MASS")

'도구 > 패키지 적재하기...' 메뉴 기능을 선택하고, MASS 패키지를 찾아서 선택한다.

 

그리고나서, '데이터 > 패키지에 있는 데이터 > 첨부된 패키지에서 데이터셋 읽기...' 메뉴 기능을 선택하면 하위 선택 창으로 이동한다. 아래와 같이 MASS 패키지를 선택하고, housing 데이터셋을 찾아 선택한다.

Linux 사례 (MX 21)

housing 데이터셋이 활성화된다. R Commander 상단의 메뉴에서 < 활성 데이터셋 없음> 이 'housing'로 바뀐다.

Linux 사례 (MX 21)

summary(housing)
str(housing)

'통계 > 요약 > 활성 데이터셋' 메뉴 기능을 선택하여 housing 데이터셋의 요약 정보를 살펴보자. 아울러 입력창에 str(housing)을 입력하고 <실행하기> 버튼을 누르자.

Linux 사례 (MX 21)

데이터셋의 내부는 다음과 같다:

Linux 사례 (MX 21)


housing {MASS} R Documentation

Frequency Table from a Copenhagen Housing Conditions Survey

Description

The housing data frame has 72 rows and 5 variables.

Usage

housing

Format

Sat

Satisfaction of householders with their present housing circumstances, (High, Medium or Low, ordered factor).

Infl

Perceived degree of influence householders have on the management of the property (High, Medium, Low).

Type

Type of rental accommodation, (Tower, Atrium, Apartment, Terrace).

Cont

Contact residents are afforded with other residents, (Low, High).

Freq

Frequencies: the numbers of residents in each class.

Source

Madsen, M. (1976) Statistical analysis of multiple contingency tables. Two examples. Scand. J. Statist. 3, 97–106.

Cox, D. R. and Snell, E. J. (1984) Applied Statistics, Principles and Examples. Chapman & Hall.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

Examples

options(contrasts = c("contr.treatment", "contr.poly"))

# Surrogate Poisson models
house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat, family = poisson,
                  data = housing)
## IGNORE_RDIFF_BEGIN
summary(house.glm0, cor = FALSE)
## IGNORE_RDIFF_END

addterm(house.glm0, ~. + Sat:(Infl+Type+Cont), test = "Chisq")

house.glm1 <- update(house.glm0, . ~ . + Sat*(Infl+Type+Cont))
summary(house.glm1, cor = FALSE)

1 - pchisq(deviance(house.glm1), house.glm1$df.residual)

dropterm(house.glm1, test = "Chisq")

addterm(house.glm1, ~. + Sat:(Infl+Type+Cont)^2, test  =  "Chisq")

hnames <- lapply(housing[, -5], levels) # omit Freq
newData <- expand.grid(hnames)
newData$Sat <- ordered(newData$Sat)
house.pm <- predict(house.glm1, newData,
                    type = "response")  # poisson means
house.pm <- matrix(house.pm, ncol = 3, byrow = TRUE,
                   dimnames = list(NULL, hnames[[1]]))
house.pr <- house.pm/drop(house.pm %*% rep(1, 3))
cbind(expand.grid(hnames[-1]), round(house.pr, 2))

# Iterative proportional scaling
loglm(Freq ~ Infl*Type*Cont + Sat*(Infl+Type+Cont), data = housing)


# multinomial model
library(nnet)
(house.mult<- multinom(Sat ~ Infl + Type + Cont, weights = Freq,
                       data = housing))
house.mult2 <- multinom(Sat ~ Infl*Type*Cont, weights = Freq,
                        data = housing)
anova(house.mult, house.mult2)

house.pm <- predict(house.mult, expand.grid(hnames[-1]), type = "probs")
cbind(expand.grid(hnames[-1]), round(house.pm, 2))

# proportional odds model
house.cpr <- apply(house.pr, 1, cumsum)
logit <- function(x) log(x/(1-x))
house.ld <- logit(house.cpr[2, ]) - logit(house.cpr[1, ])
(ratio <- sort(drop(house.ld)))
mean(ratio)

(house.plr <- polr(Sat ~ Infl + Type + Cont,
                   data = housing, weights = Freq))

house.pr1 <- predict(house.plr, expand.grid(hnames[-1]), type = "probs")
cbind(expand.grid(hnames[-1]), round(house.pr1, 2))

Fr <- matrix(housing$Freq, ncol  =  3, byrow = TRUE)
2*sum(Fr*log(house.pr/house.pr1))

house.plr2 <- stepAIC(house.plr, ~.^2)
house.plr2$anova

[Package MASS version 7.3-53.1 Index]

'Dataset_info > housing' 카테고리의 다른 글

housing 데이터셋 예제  (0) 2022.06.25

+ Recent posts